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1. Introduction 

Efficiency is among the most important considerations in the design of aircraft 
turbine engines. Modern internal combustion turbine engines have improved 
significantly in the past few decades; efforts to increase their efficiency have 
included design innovations to increase the usable air pressure at combustion, 
which is limited by compressed stall. Such design improvements include the 
capability of newer turbine blades to have fluid run through them during use1—a 
feature which many newer engines include. A cutaway view of a typical rotorcraft 
engine is shown in Fig. 1. Although there have been many innovations, 
opportunities exist for improvements that are largely unexplored. The present 
initiative aims to enhance the efficiency of aircraft turbine engines through the 
articulation of turbine blades during flight. The blade pitch chosen for all rotor and 
stator blades in existing turbine engines is fixed, even though aircraft are operated 
through a wide range of conditions. Different flight velocities and altitudes, for 
example, influence air pressures and temperatures, which change the flow behavior 
of the air. If it were possible to rotate turbine blades to a new angle-of-attack during 
flight, these changes in the viscous properties of air could be compensated for so 
that optimal fluid-flow behavior is maintained.2 

 

Fig. 1 Cutaway image of typical rotorcraft engine2 

There are several candidate mechanisms and materials that could be used to achieve 
turbine blade articulation, but many of these are not plausible. For example, if each 
blade were individually motorized, the required power and extra weight would 
negate the benefit of the articulation capability. Piezoelectric materials, which 
change shape with an applied electric charge, are another option;  
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however, weight would become a concern because of the relatively low-power 
density of piezoelectric materials. Shape memory alloys are an option with very 
high-power density, and they can be operated without the use of motors or hydraulic 
fluid. 

Shape memory alloys (SMAs) compensate for changes in shape through a phase 
change between austenite and martensite rather than through the creation of 
dislocations for strains up to around 6%. This phase change can be influenced by 
either a change in temperature or an applied stress. If a piece of shape memory alloy 
in the martensite phase is heated to above its transformation temperature, it will 
undergo a phase change to austenite; the resulting shape change can be used to do 
mechanical work on the SMAs’ surroundings. Figure 2 illustrates the phase 
composition versus temperature behavior of SMAs. 

 
Fig. 2 SMA phase hysteresis3 

SMAs for the articulation of turbine blades are promising, but there are several 
challenges associated with them that need to be overcome. For example, the 
temperature of the air inside the hot section of turbine engines exceeds 1000 °C, 
while the transformation temperatures of existing SMAs are between 100 and  
200 °C.3 There are various possible solutions to this challenge, such as running 
coolant across the SMA, housing the SMA itself in a cooler part of the engine, and 
developing new SMAs with higher phase transition temperatures. 

The long-term goal of the project is to develop a working prototype of an actuating 
turbine blade, but a computational approach will help to answer design questions 
and concerns without being too costly. Therefore, a computational model of an 
SMA actuator is an intermediate goal. This model will be developed in the 
following 3 general steps:
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1) Develop a computational fluid dynamic (CFD) model of the fluid-
 structure interaction between the airflow and the articulating airfoils, 

2) Develop a finite-element model of the SMA mechanism, and 

3) Interface results from 2 models to achieve a comprehensive model of 
 the actuated turbine blades during engine operation. 

Steps 1 and 2 are being worked on concurrently, and the focus of this writing is the 
first work toward Step 1. 

2. Methods, Assumptions, and Procedures 

CFD simulations were carried out on a High Performance Computing (HPC) 
Excalibur, a Cray XC40 System, located at the US Army Research Laboratory’s 
Department of Defense Supercomputing Resource Center.4 The software chosen 
for simulation on Excalibur was Converge, which features a fully compressible 
Navier Stokes equation formulation, fluid-structure interaction modeling for 
immersed objects, and a parallelized solver with Message-Passing-Interface (MPI) 
protocols for efficient running on distributed memory architectures (i.e., HPC 
Excalibur). 

Converge also uses a feature called Adaptive Mesh Refinement (AMR) to 
significantly cut down on computational time. AMR coarsens the cell size in areas 
where there is little activity. For the simulations carried out in this experiment, the 
mesh was refined by velocity, meaning the difference in air velocity from one cell 
to adjacent cells determined how refined the cell size needed to be in that region. 
See Fig. 3 for an example of what an AMR result for this project looked like.



 

Approved for public release; distribution is unlimited. 

4 
 

 

Fig. 3 Refined mesh for 2 rotor-2 stator setup 

Figure 4 depicts the case setup used for the results shown in this technical report. 
The case setup consisted of 2 pairs of blades: 1 pair of rotors and 1 pair of stators. 
The inflow of air was fixed at 85 m/s, and the walls were defined as inviscid walls. 
The rotors did not move in the radial direction for this simulation (that motion 
would be in the up direction in Fig. 4), but the blades were articulated 
simultaneously in a sinusoidal pattern about the leading edge of the blades with an 
articulation magnitude of 10°. The AMR parameters for the simulation give a 
maximum cell size of a cube 2 cm on a side, and the smallest cell size was 1/8 cm 
in each dimension. The cord length of the blades shown was about 22 mm. The 
maximum number of cells allowed by the simulation was 2 million; the actual 
number of cells during the simulation never exceeded approximately 72,000.
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Fig. 4 Case setup for CFD simulation 

3. Preliminary Results and Discussion 

Figure 5 shows flow velocity fields at 3 extreme points during blade articulation: 
10° above normal, no articulation, and 10° below normal. The simulation depicted 
used an articulation period of 0.5 s; however, simulations were also performed for 
an articulation period of 0.25 s. Those results were indistinguishable from the ones 
shown in Fig. 5. Air flow behavior changes depending on the angle of the blades; 
the flow between the right pair of blades (the rotors) slows when the air is not 
directed in between them by the stator blades. Of course, in a real engine, there 
would be an entire ring of blades, so one would expect the boundary layer 
transitions to be different. 

 

Fig. 5 Velocity fields at 3 points during articulation 
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4. Conclusions and Future Work 

The results gathered thus far serve as a proof-of-concept that the articulation of 
turbine blades does in fact have a visible effect on the boundary layer behavior in 
the airflow across the blades. The tools are now in place to develop more rigorous 
case setups. For example, the number of rotor and stator blades will be increased, 
with the eventual goal of simulating an entire ring of blades, as in a real turbine 
engine. The nondimensional governing parameters of the simulation, such as 
Reynold’s number and y+ value, will be rigorously scrutinized to ensure the 
validity of future results. In addition, various points and patterns of articulation will 
be studied. The aerodynamic center and center of gravity of the blades, for example, 
will be tested as points of articulation. The effect of manipulating the phase 
difference between the 2 sets of blades will also be simulated. 

Converge is capable of outputting pressure values at each point on the surfaces 
immersed in the CFD simulation. Future simulations will fetch these values, which 
will in turn be used to develop an expression for the moment on some articulating 
mechanism attached to the blade as a function of angle of attack and rate of change 
of angle of attack. This expression will be used in a finite-element simulation of the 
SMA actuator, resulting in a quasi-fully-coupled simulation of the complete 
actuating mechanism in flight. 
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